CS188 Fall 2016: Discussion 11

Note: The original worksheet was buggy. Here's the fixed version.

Neural Nets and Computation Graphs

Consider the following two-neuron network for binary classification:

y

Here x is a single real-valued input (not a vector) with an associated class y (0 or 1). There are two neurons, with input weights w_{1} and w_{2}, and activation functions g_{1} and g_{2}. The output
$h_{w}(x)=a_{2}$
is a value between 0 and 1, representing the probability of being in class 1 . We will be using a realvalued loss function $\operatorname{Loss}_{w}(x, y)$.

Q1:
Let z_{1} and z_{2} refer to the pre-activation values at neuron 1 and neuron 2 , repsecitvely. Write z_{1}, a_{1}, z_{2}, and a_{2} in terms of the previous values of the neural network.

Q2:
Write the output a_{2} in terms of the input x, weights w_{i}, and activation functions g_{i}.
Q3:
Suppose the loss function is quadratic: $\left(\operatorname{Loss}_{w}(x, y)=\left(y-a_{2}\right)^{2}\right)$. Draw the computational graph for the loss function in terms of $w_{1}, w_{2}, x, y, z_{1}, a_{1}, z_{2}$, and a_{2}.

Q4:
Use the chain rule to derive $\partial \operatorname{Loss} / \partial w_{2}$. Write your expression as a product of partial derivatives that can be directly computed - you don't have to directly compute them. (Hint: the series of expressions you wrote in part 1 will be very useful; you may use any of those variables. Also use the graph from Q3).

Q5:
Now use the chain rule to derive $\partial L o s s / \partial w_{1}$ in terms of the same quantities as Q4.
Q6:
Suppose the loss function is quadratic $\left(\operatorname{Loss}_{w}(x, y)=\left(y-a_{2}\right)^{2}\right)$ and g_{1} and g_{2} were both sigmoid functions $1 /\left(1+e^{-z}\right)$. Using the fact that $\partial g_{i} / \partial z_{i}=g_{i}\left(z_{i}\right)\left(1-g_{i}\left(z_{i}\right)\right)$, write $\partial L o s s / \partial w_{2}$ and $\partial L o s s / \partial w_{1}$ in terms of x, y, w_{i}, a_{i}, and z_{i}.

Q7:
Write the stochastic gradient descent update for w_{1} in terms of the step size α and the values computed above. Q8:

True or False: For this classifier, there exists some value S for which $x<S$ is classified as belonging to class 0 , and $x>S$ is classified as belonging to class 1 .

