
CS188 Fall 2016: Discussion 11 Solutions

Note: The original worksheet was buggy. Here’s the fixed version.

Neural Nets and Computation Graphs

Consider the following two-neuron network for binary classification:

Here x is a single real-valued input (not a vector) with an associated class y (0 or 1). There are two neurons,
with input weights w1 and w2, and activation functions g1 and g2. The output

hw(x) = a2

is a value between 0 and 1, representing the probability of being in class 1. We will be using a real-
valued loss function Lossw(x, y).

Q1:

Let z1 and z2 refer to the pre-activation values at neuron 1 and neuron 2, repsecitvely. Write z1, a1,
z2, and a2 in terms of the previous values of the neural network.

Q2:

Write the output a2 in terms of the input x, weights wi , and activation functions gi.

Q3:

Suppose the loss function is quadratic: (Lossw(x, y) = (y � a2)2). Draw the computational graph for
the loss function in terms of w1, w2, x, y, z1, a1, z2, and a2.



Q4:

Use the chain rule to derive @Loss/@w2. Write your expression as a product of partial derivatives that
can be directly computed – you don’t have to directly compute them. (Hint: the series of expressions you
wrote in part 1 will be very useful; you may use any of those variables. Also use the graph from Q3).

It might help to redraw the computation graph above with the variables as nodes. This simplifies things and
more clearly shows the relationships between variables:

We can put partials on the edges in the above graph, since these partials relate one variable to another
that it is directly in terms of. Applying the chain rule, we follow all edges on the path from w2 to Loss,
multiplying the partials as we go.



This gives us:

(If you don’t understand this process of using the Chain Rule, please take a look at the Calculus Re-
view Worksheet on Piazza.)

Q5:

Now use the chain rule to derive @Loss/@w1 in terms of the same quantities as Q4.

Using the same process as before:

Q6:

Suppose the loss function is quadratic (Lossw(x, y) = (y � a2)2) and g1 and g2 were both sigmoid func-
tions 1/(1 + e

�z). Using the fact that @gi/@zi = gi(zi)(1 � gi(zi)), write @Loss/@w2 and @Loss/@w1 in
terms of x, y, wi , ai , and zi.

Q7:

Write the stochastic gradient descent update for w1 in terms of the step size ↵ and the values computed above.

Q8:

True or False: For this classifier and all possible weights w1 and w2, there exists some value S for which
x < S is classified as belonging to class 0, and x > S is classified as belonging to class 1.



False!

This statement implies that the network is always a linear classifier (draw out the supposed decision bound-
ary if you don’t believe this). This neural network actually has no decision boundary: all the points are
always in one class. If w2 is positive, then all inputs would be classified as class 1, and if w2 is negative, then
all inputs would be classified as class 0. Gotcha!

In general, the point of using a neural net is to compose a bunch of non-linear functions together and get a
super powerful, non-linear function at the end. As a general rule for neural nets, our weights are such that
the classifier is non-linear.


