CS188 Fall 2016: Discussion 11 Solutions

Note: The original worksheet was buggy. Here's the fixed version.

Neural Nets and Computation Graphs

Consider the following two-neuron network for binary classification:

y

Here x is a single real-valued input (not a vector) with an associated class y (0 or 1). There are two neurons, with input weights w_{1} and w_{2}, and activation functions g_{1} and g_{2}. The output
$h_{w}(x)=a_{2}$
is a value between 0 and 1 , representing the probability of being in class 1 . We will be using a realvalued loss function $\operatorname{Loss}_{w}(x, y)$.

Q1:
Let z_{1} and z_{2} refer to the pre-activation values at neuron 1 and neuron 2 , repsecitvely. Write z_{1}, a_{1}, z_{2}, and a_{2} in terms of the previous values of the neural network.

$$
\begin{aligned}
z_{1} & =x w_{1} \\
a_{1} & =g_{1}\left(z_{1}\right) \\
z_{2} & =a_{1} w_{2} \\
a_{2} & =g_{2}\left(z_{2}\right)
\end{aligned}
$$

Q2:
Write the output a_{2} in terms of the input x, weights w_{i}, and activation functions g_{i}.

$$
h_{\mathbf{w}}(x)=g_{2}\left(w_{2} g_{1}\left(w_{1} x\right)\right)
$$

Q3:
Suppose the loss function is quadratic: $\left(\operatorname{Loss}_{w}(x, y)=\left(y-a_{2}\right)^{2}\right)$. Draw the computational graph for the loss function in terms of $w_{1}, w_{2}, x, y, z_{1}, a_{1}, z_{2}$, and a_{2}.
x

y

w_{1}

Q4:
Use the chain rule to derive $\partial L o s s / \partial w_{2}$. Write your expression as a product of partial derivatives that can be directly computed - you don't have to directly compute them. (Hint: the series of expressions you wrote in part 1 will be very useful; you may use any of those variables. Also use the graph from Q3).

It might help to redraw the computation graph above with the variables as nodes. This simplifies things and more clearly shows the relationships between variables:

We can put partials on the edges in the above graph, since these partials relate one variable to another that it is directly in terms of. Applying the chain rule, we follow all edges on the path from w_{2} to Loss, multiplying the partials as we go.

This gives us:

$$
\frac{\delta L o s s}{\delta w_{2}}=\frac{\delta L o s s}{\delta a_{2}} \frac{d a_{2}}{d z_{2}} \frac{\delta z_{2}}{\delta w_{2}}
$$

(If you don't understand this process of using the Chain Rule, please take a look at the Calculus Review Worksheet on Piazza.)

Q5:
Now use the chain rule to derive $\partial L o s s / \partial w_{1}$ in terms of the same quantities as Q4.
Using the same process as before:

$$
\frac{\delta \text { Loss }}{\delta w_{1}}=\frac{\delta \text { Loss }}{\delta a_{2}} \frac{d a_{2}}{d z_{2}} \frac{\delta z_{2}}{\delta a_{1}} \frac{d a_{1}}{d z_{1}} \frac{\delta z_{1}}{\delta w_{1}}
$$

Q6:
Suppose the loss function is quadratic $\left(\operatorname{Loss}_{w}(x, y)=\left(y-a_{2}\right)^{2}\right)$ and g_{1} and g_{2} were both sigmoid functions $1 /\left(1+e^{-z}\right)$. Using the fact that $\partial g_{i} / \partial z_{i}=g_{i}\left(z_{i}\right)\left(1-g_{i}\left(z_{i}\right)\right)$, write $\partial L o s s / \partial w_{2}$ and $\partial L o s s / \partial w_{1}$ in terms of x, y, w_{i}, a_{i}, and z_{i}.

$$
\begin{aligned}
\frac{\delta L o s s}{\delta w_{2}} & =-2\left(y-a_{2}\right) g_{2}\left(z_{2}\right)\left(1-g_{2}\left(z_{2}\right)\right) a_{1} \\
& =-2\left(y-a_{2}\right) a_{1} \frac{1}{1+e^{-z_{2}}}\left(1-\frac{1}{1+e^{-z_{2}}}\right) \\
\frac{\delta L o s s}{\delta w_{1}} & =2\left(y-a_{2}\right) g_{2}\left(z_{2}\right)\left(1-g_{2}\left(z_{2}\right)\right) w_{2} g_{1}\left(z_{1}\right)\left(1-g_{2}\left(z_{2}\right)\right) x \\
& =-2\left(y-a_{2}\right) a_{1} a_{2} w_{2} x \frac{1}{1+e^{-z_{1}}}\left(1-\frac{1}{1+e^{-z_{1}}}\right) \frac{1}{1+e^{-z_{2}}}\left(1-\frac{1}{1+e^{-z_{2}}}\right)
\end{aligned}
$$

Q7:
Write the stochastic gradient descent update for w_{1} in terms of the step size α and the values computed above.

$$
w_{1} \leftarrow w_{1}+\alpha\left(y-a_{2}\right) a_{1} a_{2} w_{2} x \frac{1}{1+e^{-z_{1}}}\left(1-\frac{1}{1+e^{-z_{1}}}\right) \frac{1}{1+e^{-z_{2}}}\left(1-\frac{1}{1+e^{-z_{2}}}\right)
$$

Q8:
True or False: For this classifier and all possible weights w_{1} and w_{2}, there exists some value S for which $x<S$ is classified as belonging to class 0 , and $x>S$ is classified as belonging to class 1 .

False!

This statement implies that the network is always a linear classifier (draw out the supposed decision boundary if you don't believe this). This neural network actually has no decision boundary: all the points are always in one class. If w_{2} is positive, then all inputs would be classified as class 1 , and if w_{2} is negative, then all inputs would be classified as class 0 . Gotcha!

In general, the point of using a neural net is to compose a bunch of non-linear functions together and get a super powerful, non-linear function at the end. As a general rule for neural nets, our weights are such that the classifier is non-linear.

