CS 188 Discussion 0:
Welcome!

TA: Sherdil Niyaz



Welcome to
Discussion!




Who am 17

* Sherdil Niyaz, Senior in EECS
* Discussion: 12 Win 3113 Eteh

* Hopefully another section if we expand the course

* Qffice hours: 1-2pm on Friday in 34 1A Soda (In
Upper Division Lounge)

* |nterests: Teaching, Robotics, CS Theory, Al



Email

* shiyaz@berkeley.edu

* Feeling lost in the class? Falling behind?
Just want to talk about the course (or
anything?) Don't be afraid to emaill

* Also, please bug we if | don't respond. |
dont mind.


mailto:sniyaz@berkeley.edu

Section Site

* http:/sniyaz.weebly.com/csl 88.html

* Pon't feel pressured to take notes. | will
put up anything | use on this site.

* |nstead, | want you listening in section
and not rushing to write things down :)


http://sniyaz.weebly.com/cs188.html

Rules of Section

* Berespectful. Pon't be condescending o people
who take longer to really master a fopic.

* Pon't be afraid to ask questions. The only stupid
question is the one you don't ask.

* |f | don't address you using your nawme, call me
out on if!

* || talk too fast, give me a signal to slow down.



Who are you?

* Turn to somebody next to you and introduce
yourself!

* Nawe! Year! Major! Social Security Number!

* Share an interesting thing youv've done,
about you, efe. Just something interesting.

* You may be asked to share....make sure you
pay attention.



Anything interesting?

(Keep it PG-13 and legal
please)



Things you should

remewmber for this class
* 0S616: Graphs, Asymptotic Analysis

* 0S70: General Probability, Expectation,
Bayes Rule

* Not comprehensive list

* Now is a good time to review these if
you've forgotten!



Search

* | have a problem with a bunch of states | can
progress through as | love the problem.

* |'m at a START state. | want to reach an END
state. How should | get there?

* There are actually multiple paradigms to solving
problews like this. The first is a graph based
approach.

* There are others! (Game Trees, CSPs, Logic)



otart

1] |2 1]2|3
4]5/3 4]5|
2]8]6 2]8|6
I 2 2 % 2 - 1 1 5
45[3| (4] |3| [a]5]e| [4] |5
2sle] [?[s]s] (28] | [7]8]6

Goal






State representation

* lnformation needed to encode what your
progress though the problew is.

* Another way to think about it: what
information do you store store to know
which node in the graph you're at?

* Minimal State Representation: what is
the smallest amount of information you
can store to know which node in the
graph youre at?



Transition function

* Which actions can | take at each state?
* Where do those action take me?

* Graph analogy: each edge out of a state/
node represents an action. Which edges
should exist between states and which
shouldn't?



Graph Approach

* Nodes = states

* Edges = actions. Called transition
function.

* Action can have costs.

* How do we solve? Just apply graph search
algorithms from CS6 1B! (DFS, BFS...)



CS6 1B Fun Times

function GRAPH-SEARCH(problem, fringe) return a solution, or failure
closed < an empty set
fringe <— INSERT(MAKE-NODE(INITIAL-STATE|problem)|), fringe)
loop do
if fringe is empty then return failure
node <~ REMOVE-FRONT( fringe)
if GOAL-TEST(problem, STATE|node|) then return node

if STATE|node| is not in closed then
add STATE[node| to closed
for child-node in EXPAND(STATE|node|, problem) do
fringe <— INSERT( child-node, fringe)
end
end




How is Tree Search Different?

function GRAPH-SEARCH(problem, fringe) return a solution, or failure
closed < an empty set
fringe - INSERT(MAKE-NODE(INITIAL-STATE|problem)), fringe)
loop do
if fringe is empty then return failure
node <~ REMOVE-FRONT( fringe)
if GOAL-TEST(problem, STATE|node|) then return node

if STATE|node| is not in closed then
add STATE|node| to closed
for child-node in EXPAND(STATE|node|, problem) do
fringe <— INSERT( child-node, fringe)
end
end




How is Tree Search Different?

function GRAPH-SEARCH(problem, fringe) return a solution, or failure

fringe <= INSERT(MAKE-NODE(INITIAL-STATE problem)), fringe)
loop do

if fringe is empty then return failure

node <~ REMOVE-FRONT( fringe)

if GOAL-TEST(problem, STATE|node|) then return node

'™ ' o > | 0 .

for child-node in EXPAND(STATE|node|, problem) do
fringe <— INSERT( child-node, fringe)
end
end

lgnore the Closed/Explored Set!



Tree Search Failure
@ :

S

* What can happen if we get unlucky?




Tree Search Failure
@ :

Loop Here Forever

S

* What can happen if we get unlucky?




function GRAPH-SEARCH(problem, fringe) return a solution, or failure
closed < an empty set
fringe < INSERT(MAKE-NODE(INITIAL-STATE|problem)|), fringe)
loop do
if fringe is empty then return failure
node <~ REMOVE-FRONT( fringe)
if GOAL-TEST(problem, STATE|node|) then return node

if STATE[node| is not in closed then
add STATE[node| to closed
for child-node in EXPAND(STATE|node|, problem) do
fringe <= INSERT( child-node, fringe)
end
end




function GRAPH-SEARCH(problem, fringe) return a solution, or failure
closed <+ an empty set
fringe <= INSERT(MAKE-NODE(INITIAL-STATE problem)), fringe)
loop do
if fringe is
1ode <~ REMOVE-FRONT( fringe
if GOAL-TE? e, STATE|node|) then return node

if STATE[node| is not in closed then
add STATE[node| to closed
for child-node in EXPAND(STATE|node|, problem) do
fringe <— INSERT( child-node, fringe)
end

emptyv then return failure

end

This is the ONLY decision that changes the type of search!



PDB tutorial (if time
allows)




