
Timing Sheet

▪ 7: CSP Lecture 
▪ 5: CSP Alone 
▪ 5: CSP together 
▪ 7: CSP Go Over
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▪ 10: Game Tree lecture 
▪ 6 Together (Or work in general) 
▪ 7 Go Over Game Trees



New Thing!

I want to make the 10 minutes before 
section a quick OH for conceptual 
questions. Don’t be afraid to call me 
over and ask something!
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CS 188: Artificial Intelligence  
Discussion 2:  

Constraint Satisfaction Problems and Game Trees

TA: Sherdil Niyaz 

University of California, Berkeley



Administrivia
▪ Project 1: Search 

▪ Friday 9/16 at 5pm. 
▪ Start early and ask questions.  It’s longer than most! There are extra credit “reach” 

objectives that are tough to beat. 
▪ Solo or in group of two. 

▪ Contest 1: Search 
▪ Due Sunday 9/18 at 11:59pm. 
▪ Solo or in group of two. 
▪ Friendly competition. Consider joining in, even if you’re not the competitive type.  
▪ Extra credit opportunities if you beat the staff bots. Even more extra credit for top 

place finishers.  



TODAY’S SECTION IS 
PACKED!

Apologies if I have to squash questions at some point! 

I will also probably (unconsciously) start talking 
fast since we have so much material. Please yell at 
me to slow down if I talk too fast!
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CSPs
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CSPs

▪ Recall: Graph/Tree search 
▪ Order mattered! Going A -> B -> C potentially different 

than C -> B -> A. 

▪ CSPs are a special type of search problem where order of 
assignment does not matter.  

▪ Example: I am scheduling classes. It does not matter 
whether I give CS61B a room before CS188, or CS188 a 
room before CS61B.
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Backtracking

▪ With these problems where order doesn’t matter, running 
DFS etc actually wastes lots of time. 

▪ Alternative: Use the backtracking algorithm!  

▪ Formulation: I have a bunch of variables, each with a 
domain of values I can assign to it.  

▪ I also need to assign each variable with a value in its 
domain without violating any of the constraints that I’m 
given.
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TLDR: Backtracking

▪ Keep assigning each variable a value in its domain that 
doesn’t violate the given constraints 

▪ When you can no longer do this and you haven’t solved the 
CSP, you messed up!  

▪ Time to back track: go to the last variable that you 
assigned a value, and give it a different one if possible. Try 
again. 

▪ Important: May need to backtrack multiple times!
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Backtracking Power-Ups

▪ Common misconception from Office Hours: Forward 
Checking, AC3, MRV, etc are not alternatives to 
Backtracking! 

▪ Instead they are power ups! They are just extras that we 
strap onto backtracking to make it faster. 

▪ Forward checking: When you assign a variable a value, 
kick out from its neighbors (aka variables that share a 
constraint with it) any conflicting values. 

▪ Arc Consistency (AC3) is a stronger version of this.
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Moar Backtracking Power-Ups

▪ MRV: When you pick the variable to assign next in 
backtracking, pick the one that has the minimum number 
of legal values left in its domain. 

▪ LCV: Now that you’ve picked the next variable to assign, 
pick from its domain the value that would cause the 
minimum number of values to be ejected when forcing arc 
consistency.
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3-Col Backtracking Animation!

▪ This is on our section 
website, by the way!  
 
(http://sniyaz.weebly.com/
cs188.html)  

▪ Note that this animation 
shows the constraint graph, 
where two variables share an 
edge if they are bound by a 
binary constraint. 12

http://sniyaz.weebly.com/cs188.html


Game Trees
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Game Trees

▪ Notice: In each of the search algorithms we’ve seen so far, 
there’s only been one agent! (i.e. we’ve had Pacman, but 
no ghosts!)  

▪ How do we handle two agents playing against eachother? 

▪ Let’s assume that we have two players A and B playing a 
game optimally. A wants to maximize the score of the 
game, and B wants to minimize it.
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Mini-Max Algorithm

▪ Let’s assume that we have two players A and B playing a 
game optimally. A wants to maximize the score of the 
game, and B wants to minimize it. 

▪ We go from the bottom of the game tree up, and see which 
actions that each agent would take at each level. 
  

▪ Remember, each branch in the game tree represents a 
different set of moves that might happen.
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Example
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Pruning

▪ Sometimes certain parts of the game tree would never be 
reached since one of the players wouldn’t allow it! 

▪ When we know this is the case, we can stop computing on 
that branch and save time! 

▪ Result: same answer, but faster runtime for Mini-Max
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Warm-Up 1: Bounds

▪ When a maximizer 
finds a value (2, in 
this case) the final 
value returned by the 
minimizer will be at 
least that value. 
(Since any choices 
that are smaller will 
get rejected). 

▪ This is symmetric for 
a minimizer.
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Warm-Up 2: Allowing Branches

▪ If a minimizer has 
already found a value, 
they will only let the 
game proceed down 
branches that can find 
smaller values than 
the found one. 

▪ This is symmetric for 
a maximizer.
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This 
branch should 

be able to produce 
a value less than 6, 
or I won’t let the 

game go here!



Pruning: A “cutoff” approach

▪ Let’s combine the previous two ideas!  

▪ Alphas and betas are confusing :/  
I prefer to think in terms of cutoffs: If my “parent” node 
has found an option already, and I will only find things they 
like less, then why bother? 

▪ Reasoning: they’ll never let me even get to this point, 
since they play optimally. They can just force me to the 
option that’s better for them. 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An example!

▪ This is confusing! Show me an example? 

▪ http://inst.eecs.berkeley.edu/~cs61b/fa14/ta-materials/
apps/ab_tree_practice/ 
 
(Also linked from section site)  

▪ This animation is awesome! Use it to generate infinite 
practice problems!  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http://inst.eecs.berkeley.edu/~cs61b/fa14/ta-materials/apps/ab_tree_practice/

