
Timing Sheet

▪ 7: CSP Lecture
▪ 5: CSP Alone
▪ 5: CSP together
▪ 7: CSP Go Over

1

▪ 10: Game Tree lecture
▪ 6 Together (Or work in general)
▪ 7 Go Over Game Trees

New Thing!

I want to make the 10 minutes before
section a quick OH for conceptual
questions. Don’t be afraid to call me
over and ask something!

2

CS 188: Artificial Intelligence  
Discussion 2:

Constraint Satisfaction Problems and Game Trees

TA: Sherdil Niyaz

University of California, Berkeley

Administrivia
▪ Project 1: Search

▪ Friday 9/16 at 5pm.
▪ Start early and ask questions. It’s longer than most! There are extra credit “reach”

objectives that are tough to beat.
▪ Solo or in group of two.

▪ Contest 1: Search
▪ Due Sunday 9/18 at 11:59pm.
▪ Solo or in group of two.
▪ Friendly competition. Consider joining in, even if you’re not the competitive type.
▪ Extra credit opportunities if you beat the staff bots. Even more extra credit for top

place finishers.  

TODAY’S SECTION IS
PACKED!

Apologies if I have to squash questions at some point!

I will also probably (unconsciously) start talking
fast since we have so much material. Please yell at
me to slow down if I talk too fast!

5

CSPs

6

CSPs

▪ Recall: Graph/Tree search
▪ Order mattered! Going A -> B -> C potentially different

than C -> B -> A. 

▪ CSPs are a special type of search problem where order of
assignment does not matter.

▪ Example: I am scheduling classes. It does not matter
whether I give CS61B a room before CS188, or CS188 a
room before CS61B.

7

Backtracking

▪ With these problems where order doesn’t matter, running
DFS etc actually wastes lots of time.

▪ Alternative: Use the backtracking algorithm!  

▪ Formulation: I have a bunch of variables, each with a
domain of values I can assign to it.

▪ I also need to assign each variable with a value in its
domain without violating any of the constraints that I’m
given.

8

TLDR: Backtracking

▪ Keep assigning each variable a value in its domain that
doesn’t violate the given constraints

▪ When you can no longer do this and you haven’t solved the
CSP, you messed up!  

▪ Time to back track: go to the last variable that you
assigned a value, and give it a different one if possible. Try
again.

▪ Important: May need to backtrack multiple times!
9

Backtracking Power-Ups

▪ Common misconception from Office Hours: Forward
Checking, AC3, MRV, etc are not alternatives to
Backtracking!

▪ Instead they are power ups! They are just extras that we
strap onto backtracking to make it faster. 

▪ Forward checking: When you assign a variable a value,
kick out from its neighbors (aka variables that share a
constraint with it) any conflicting values.

▪ Arc Consistency (AC3) is a stronger version of this.
10

Moar Backtracking Power-Ups

▪ MRV: When you pick the variable to assign next in
backtracking, pick the one that has the minimum number
of legal values left in its domain. 

▪ LCV: Now that you’ve picked the next variable to assign,
pick from its domain the value that would cause the
minimum number of values to be ejected when forcing arc
consistency.

11

3-Col Backtracking Animation!

▪ This is on our section
website, by the way!  
 
(http://sniyaz.weebly.com/
cs188.html)  

▪ Note that this animation
shows the constraint graph,
where two variables share an
edge if they are bound by a
binary constraint. 12

http://sniyaz.weebly.com/cs188.html

Game Trees

13

Game Trees

▪ Notice: In each of the search algorithms we’ve seen so far,
there’s only been one agent! (i.e. we’ve had Pacman, but
no ghosts!)  

▪ How do we handle two agents playing against eachother? 

▪ Let’s assume that we have two players A and B playing a
game optimally. A wants to maximize the score of the
game, and B wants to minimize it.

14

Mini-Max Algorithm

▪ Let’s assume that we have two players A and B playing a
game optimally. A wants to maximize the score of the
game, and B wants to minimize it. 

▪ We go from the bottom of the game tree up, and see which
actions that each agent would take at each level. 

▪ Remember, each branch in the game tree represents a
different set of moves that might happen.

15

Example

16

Pruning

▪ Sometimes certain parts of the game tree would never be
reached since one of the players wouldn’t allow it! 

▪ When we know this is the case, we can stop computing on
that branch and save time! 

▪ Result: same answer, but faster runtime for Mini-Max

17

Warm-Up 1: Bounds

▪ When a maximizer
finds a value (2, in
this case) the final
value returned by the
minimizer will be at
least that value.
(Since any choices
that are smaller will
get rejected).

▪ This is symmetric for
a minimizer.

18

� 2

Warm-Up 2: Allowing Branches

▪ If a minimizer has
already found a value,
they will only let the
game proceed down
branches that can find
smaller values than
the found one.

▪ This is symmetric for
a maximizer.

19

This
branch should

be able to produce
a value less than 6,
or I won’t let the

game go here!

Pruning: A “cutoff” approach

▪ Let’s combine the previous two ideas!  

▪ Alphas and betas are confusing :/  
I prefer to think in terms of cutoffs: If my “parent” node
has found an option already, and I will only find things they
like less, then why bother? 

▪ Reasoning: they’ll never let me even get to this point,
since they play optimally. They can just force me to the
option that’s better for them. 
  20

An example!

▪ This is confusing! Show me an example? 

▪ http://inst.eecs.berkeley.edu/~cs61b/fa14/ta-materials/
apps/ab_tree_practice/ 
 
(Also linked from section site)  

▪ This animation is awesome! Use it to generate infinite
practice problems!  
 

21

http://inst.eecs.berkeley.edu/~cs61b/fa14/ta-materials/apps/ab_tree_practice/

