
CS 61B DISCUSSION 12
TA: Sherdil Niyaz

ADMINISTRIVIA

Project 3 T__T

A* will be covered this section, so hopefully this helps a bit.

I made a dumb last section by skipping the Topological Sort
problem. I uploaded a correction pdf on our section site.

Dijkstra’s Algorithm!

Dijkstra’s Algorithm!

Main idea: find shortest path/shortest distance from start node in
graph to every other node.

Uses a PQueue, where priorities of nodes are their distance
from the start node. Call this d(V).

We pull the closest node off the queue each iteration, and update
the distances for its adjacent nodes. Then repeat.

(From the CS 170 Book)

Dijkstra’s Algorithm!

Notice how we “grew” out an area of exploration, and updates
the distances of all nodes that were not in that area. Once a node
joined the area, we knew its distance was correct (you’ll prove
why in CS 170).

Runtime is O(E logV)

A*

A*

Variant of Dijkstra’s, but now we are looking for the shortest path/
distance from the start node to some goal node, not every node in the
graph!

Each node has a heuristic: a guess of how far it is from the goal node.
This gives A* some “direction” to start exploring from.

Now we have to change the priorities to match our new goal. The
priority of a node is now d(V) + h(V).

Updating is done in the usual way: pop a node, update the priorities of
its neighbors if they can be lowered.

A*

Whoops.

A*

A* only gives us the shortest path if the heuristic for each node
is admissible.

This means that, for each node V in the graph, h(V) is less than or
equal to the actual distance from V to the goal.

Some people say that you need an “optimistic” heuristic because
of this (one that never over-estimates the true distance).

Proof in CS 188 (The AI class).

Minimum Spanning Trees

Minimum Spanning Trees

Series of edges that connects all nodes in a graph, but that that have
minimal total weight.

Multiple algorithms that are used to find them.

They use the cut property: If you take any cut on a graph, the
minimum weight edge crossing that cut must be part of the MST
(assuming all edge weights unique, which we do in 61B’s proof sketch).

Cut: Just any two sets of node, so long as there is at least one node in
each set.

The Cut Property, Illustrated!

