## CS 6IB DISCUSSION I2

TA: Sherdil Niyaz

## ADMINISTRIVIA

- Project 3

- $A^{*}$ will be covered this section, so hopefully this helps a bit.
- I made a dumb last section by skipping the Topological Sort problem. I uploaded a correction pdf on our section site.

Dijkstra's Algorithm!

## Dijkstra's Algorithm!

- Main idea: find shortest path/shortest distance from start node in graph to every other node.
- Uses a PQueue, where priorities of nodes are their distance from the start node. Call this $d(V)$.
- We pull the closest node off the queue each iteration, and update the distances for its adjacent nodes. Then repeat.


| A: 0 | D: $\infty$ |
| :--- | :--- |
| B: 4 | E: $\infty$ |
| C: 2 |  |

(From the CS I70 Book)


| A: 0 | D: 6 |
| :--- | :--- |
| B: 3 | E: 7 |
| C: 2 |  |



| A: 0 | D: 5 |
| :--- | :--- |
| B: | E: 6 |
| C: 2 |  |



| A: 0 | D: 5 |
| :--- | :--- |
| B: 3 | E: 6 |
| C: 2 |  |



## Dijkstra's Algorithm!

- Notice how we "grew" out an area of exploration, and updates the distances of all nodes that were not in that area. Once a node joined the area, we knew its distance was correct (you'll prove why in CS 170).
- Runtime is $\mathrm{O}(\mathrm{E} \log \mathrm{V})$


## A*

## A*

- Variant of Dijkstra's, but now we are looking for the shortest path/ distance from the start node to some goal node, not every node in the graph!
- Each node has a heuristic: a guess of how far it is from the goal node. This gives A* some "direction" to start exploring from.
- Now we have to change the priorities to match our new goal. The priority of a node is now $d(V)+h(V)$.
- Updating is done in the usual way: pop a node, update the priorities of its neighbors if they can be lowered.


## A*



- Whoops.


## A*

- A* only gives us the shortest path if the heuristic for each node is admissible.
- This means that, for each node V in the graph, $\mathrm{h}(\mathrm{V})$ is less than or equal to the actual distance from $V$ to the goal.
- Some people say that you need an "optimistic" heuristic because of this (one that never over-estimates the true distance).
- Proof in CS 188 (The AI class).

Minimum Spanning Trees

## Minimum Spanning Trees

- Series of edges that connects all nodes in a graph, but that that have minimal total weight.
- Multiple algorithms that are used to find them.
- They use the cut property: If you take any cut on a graph, the minimum weight edge crossing that cut must be part of the MST (assuming all edge weights unique, which we do in 6IB's proof sketch).
- Cut: Just any two sets of node, so long as there is at least one node in each set.


## The Cut Property, Illustrated!



