
CS61B DISCUSSION 2
TA: SHERDIL NIYAZ

Updates:
I’m back for lab this week! My office hours are also
back on 5-6 PM in Josh Hug’s office.

You have a project due this Friday! We’re here to help!

Extra Problem Set 2 isn’t out yet, but should be by the
end of the week…sorry for the hold up.

Extra reading from Professor Shewchuck’s CS61B
that will be helpful in learning about static and
classes: https://www.cs.berkeley.edu/~jrs/61b/lec/03

https://www.cs.berkeley.edu/~jrs/61b/lec/03

A note on bits:
Every variable in java is stored as bits under the hood.

Example: when you make a variable x that stores an int, Java stores bits
that represent the number. 
 
int x = 7 
 
Java sees: 
 
x —-> 111

In the case of primitive types, the bits literally store what the variable
is (i.e for byte, short, int, long, float, double, boolean, char).

What about when you aren’t dealing with a primitive type?

Non primitive types
When you make an object that is not primitive (literally any type except the 8 on the
previous slide), you can’t literally store what the object is. The object is created in a far
off place, and then the bits in the variable act as an address to let the java access that
object later. This is called pass by reference. Address is a synonym for reference! 
 
Walrus x = new Walrus(); 
 
Java sees: 
 
x —> 010101011111111 
 
where the bits represent the address of the Walrus object.

Pictorially, you can show this as an arrow pointing to the Walrus object in a box and
pointer diagram.

Example

http://cscircles.cemc.uwaterloo.ca/java_visualize/#code=public+class+PollQuestions+%7B%0A+++public+static+void+main(String%5B%5D+args)+%7B%0A++++++Walrus+a+%3D+new+Walrus(1000,+8.3)%3B%0A++++++Walrus+b%3B%0A++++++b+%3D+a%3B%0A++++++b.weight+%3D+5%3B%0A++++++System.out.println(a)%3B%0A++++++System.out.println(b)%3B++++++%0A%0A++++++int+x+%3D+5%3B%0A++++++int+y%3B%0A++++++y+%3D+x%3B%0A++++++x+%3D+2%3B%0A++++++System.out.println(%22x+is%3A+%22+%2B+x)%3B%0A++++++System.out.println(%22y+is%3A+%22+%2B+y)%3B++++++%0A+++%7D%0A+++%0A+++public+static+class+Walrus+%7B%0A++++++public+int+weight%3B%0A++++++public+double+tuskSize%3B%0A++++++%0A++++++public+Walrus(int+w,+double+ts)+%7B%0A+++++++++weight+%3D+w%3B%0A+++++++++tuskSize+%3D+ts%3B%0A++++++%7D%0A%0A++++++public+String+toString()+%7B%0A+++++++++return+String.format(%22weight%3A+%25d,+tusk+size%3A+%25.2f%22,+weight,+tuskSize)%3B%0A++++++%7D%0A+++%7D%0A%7D&mode=edit

COULD YOU READ THAT LAST
SLIDE?

Static Variables
When a variable in a class is static, there is one (and only
one!) for that class, and every instance of that class! If
you have a class Dog and an instance of that class
(sparky), Dog might have a static variable num_dogs.  
 
Dog Sparky = new Dog(); 
int x = Dog.num_dogs// Groovy 
x = Sparky.num_dogs // Refers to exact same thing. 
 
The previous line is bad style though- num_dogs isn’t a
variable specific to Sparky

THIS IS DIFFERENT FROM
61A! BE WARNED!

STATIC METHODS != STATIC
VARIABLES

Static Methods (Stolen from JRS)

Analogy: def from Python (done outside a class)

QUESTIONS?

