CS 188 Discussion 6: Probability and Bayes Nets

 TA: Sherdil Niyaz

Administrivia

* HW6 due next Monday
* Project 3 due Friday!
* READ THE PROBABILITY NOTE ON THE SECTION SITE. Also under the resources tab on EdX.
* http://sniyaz.weebly.com/uploads/ 3/7/4/6/37467787/probability.pdf

Administrivia

* READ THE PROBABILITY NOTE ON THE SECTION SITE.

Administrivia

$$
\begin{aligned}
& \text { *READ THE } \\
& \text { PROBABILITY NOTE. }
\end{aligned}
$$

Administrivia

> *00 IT.

Administrivia

- Shia Labeouf

CS70 Review

Conditional Probability

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}
$$

Product Rule

$$
\operatorname{Pr}(X=x, Y=y)=\operatorname{Pr}(Y=y \mid X=x) \operatorname{Pr}(X=x)
$$

The general version of this is called the chain rule

Chain Rule

$$
\operatorname{Pr}(X=x, Y=y, Z=z)
$$

How to split this up?

Chain Rule

$$
\operatorname{Pr}(X=x, Y=y, Z=z)=\operatorname{Pr}(X=x \mid Y=y, Z=z) \operatorname{Pr}(Y=y, Z=z))
$$

$$
\operatorname{Pr}(Y=y \mid Z=z) \operatorname{Pr}(Z=z)
$$

We can keep recursively applying the product rule to get the chain rule

Chain Rule

$$
\operatorname{Pr}\left(x_{1}, x_{2}, \ldots x_{n}\right)=\operatorname{Pr}\left(x_{1}\right) \operatorname{Pr}\left(x_{2} \mid x_{1}\right) \ldots \operatorname{Pr}\left(x_{n} \mid x_{1}, \ldots, x_{n-1}\right)
$$

Bayes Rule

$$
\operatorname{Pr}(X=x \mid Y=y)
$$

$$
\frac{\operatorname{Pr}(Y=y \mid X=x) \operatorname{Pr}(X=x)}{\operatorname{Pr}(Y=y)}
$$

This lets us "flip" conditional probabilities in a sense

188 New Stuff

Joint Distributions

W	S	$\operatorname{Pr}(W, S)$
sun	yes	0.2
sun	no	0.5
rain	yes	0.2
rain	no	0.1

A table of every single possibility that can happen in our world, along with its probability.

Differences between 70 and 188

* 70: Build up probabilities from other probabilities.
* 188: Sometimes, we just calculate the joint (so all the things) first.
* Then, we get specific probabilities from that giant table (marginalization!)

Marginalization

* Find the relevant probabilities in the table for the events that we want, and add them together.
* Example: if you want $P\left(a^{+}, b^{+}\right)$(that A is true and B is true) find all events in the joint table where A and B are both true.
* Add the probabilities of all such events together.

W	S	$\operatorname{Pr}(W, S)$
sun	yes	0.2
sun	no	0.5
rain	yes	0.2
rain	no	0.1

$$
\operatorname{Pr}(S=y e s)=\sum_{w} \operatorname{Pr}(W=w, S=y e s)
$$

Problems with Joint Tables

* How many entries are there in the table representing a joint distribution involving n different random variables?

Problems with Joint Tables

we there in the table distribution t random variables?

Problems with Joint Tables

* These tables are huge. Exponentially huge in the number of variables, in fact.
* There is a much more efficient representation of the same joint distribution: Bayes Nets.

Bayes Nets

Random variables = nodes
Each variable conditioned on its parents!

How to recover full Joint Table?

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \text { parents }\left(X_{i}\right)\right)
$$

Try it!

How do I get P(A, B, C, D, E), where A through E are arbitrary outcomes of my random variables?

Try it!

$P(A) P(B) P(C \mid A, B) P(D \mid A, B) P(E \mid C, D)$

