CS 188 Discussion 6: Probability and Bayes Nets

TA: Sherdil Niyaz

Administrivia

* HW6 due next Monday

* READ THE PROBABILITY NOTE ON THE **SECTION SITE.** Also under the resources tab on EdX.

http://sniyaz.weebly.com/uploads/ 3/7/4/6/37467787/probability.pdf

* READ THE PROBABILITY NOTE ON THE SECTION SITE.

*READ THE PROBABILITY NOTE.

Administrivia

"Do it, just do it! Don't let your dreams be dreams."

- Shia Labeouf

Conditional Probability

 $\Pr[A|B] = \frac{\Pr[A \cap B]}{\Pr[B]}.$

Product Rule

Pr(X = x, Y = y) = Pr(Y = y|X = x)Pr(X = x)

The general version of this is called the chain rule

Pr(X = x, Y = y, Z = z)

How to split this up?

Chain Rule

Pr(X = x, Y = y, Z = z) = Pr(X = x | Y = y, Z = z) Pr(Y = y, Z = z)

Pr(Y = y|Z = z)Pr(Z = z)

We can keep recursively applying the product rule to get the chain rule

$Pr(x_1, x_2, ..., x_n) = Pr(x_1)Pr(x_2|x_1)...Pr(x_n|x_1, ..., x_{n-1})$

Bayes Rule Pr(X = x | Y = y)Pr(Y = y | X = x)Pr(X = x)Pr(Y = y)This lets us "flip" conditional

probabilities in a sense

Joint Distributions

W	S	Pr(W,S)
sun	yes	0.2
sun	no	0.5
rain	yes	0.2
rain	no	0.1

A table of every single possibility that can happen in our world, along with its probability.

Differences between 70 and 188

- * 70: Build up probabilities from other probabilities.
- * 188: Sometimes, we just calculate the joint (so all the things) first.
- * Then, we get specific probabilities from that giant table (marginalization!)

Marginalization

- * Find the relevant probabilities in the table for the events that we want, and add them together.
- * Example: if you want P(a+, b+) (that A is true and B is true) find all events in the joint table where A and B are both true.

* Add the probabilities of all such events together.

W	S	Pr(W,S)
sun	yes	0.2
sun	no	0.5
rain	yes	0.2
rain	no	0.1

 $Pr(S = yes) = \sum_{w} Pr(W = w, S = yes)$

Problems with Joint Tables

* How many entries are there in the table representing a joint distribution involving n different random variables?

Problems with Joint Tables

are there in the table distribution trandom variables?

Problems with Joint Tables

* There is a much more efficient representation of the same joint distribution: Bayes Nets.

How do l get P(A, B, C, D, E), where A through E are arbitrary outcomes of my random variables?

P(A)P(B)P(C|A,B)P(D|A,B)P(E|C,D)

Try it!

