CS61B DISCUSSION 8

TA: SHERDIL NIYAZ

Revisited: Asymptotics

* Big Oh and Big Omega are useful, but might not give us the best information.
* Example: $\mathrm{n}=\mathrm{O}(\mathrm{n})$. But $\mathrm{n}=\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$, and $\mathrm{n}=\mathrm{O}\left(2^{\wedge} \mathrm{n}\right)$ as well! You can give many upper bounds for the same function.
* Better: Use Big Theta. Tighter bound. See Discussion Q1.

Some summations to know

* $1+2+3+\ldots+\mathrm{N}=\mathrm{N}(\mathrm{N}+1) / 2=\Theta\left(\mathrm{N}^{\wedge} 2\right)$
* $1+2+4+8+\ldots+\mathrm{N}=2 \mathrm{~N}-1 \quad=\Theta(\mathrm{N})$
* You should memorize this, as they will come in handy.
* You don't need to know why. Refer back to your Math 1B notes if you're curious.

Amortized Analysis

* Way of showing that, on average, what runtime of something is.
* Example: ArrayDeque usually has constant inserts. Every so often, it has to resize, which is in O(n).
* We can show that it Amortized Cost (cost in the long run) is always constant. This is what the table Alan showed in lecture was trying to do.

Insert \#	0	1	2	3	4	5	6	7	8	9	10	11	12	13
$a[i]=$ cost (write cost)	1	1	1	1	1	1	1	1	1	1	1	1	1	1
resize cost(copy cost)	0	2	4	0	8	0	0	0	16	0	0	0	0	0
total cost	1	3	5	1	9	1	1	1	17	1	1	1	1	1
cumulative cost	1	4	9	10	19	20	21	22	39	40	41	42	43	44

AMORTIZED ANALYSIS: A DIFFERENT APPROACH. (DEMO)

