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Q1. [32 pts] Dynamic Bayes Net and Hidden Markov Model
A professor wants to know if students are getting enough sleep. Each day, the professor observes whether the students
sleep in class, and whether they have red eyes. Let St be the random variable of the student having enough sleep,
Rt be the random variable for the student having red eyes, and Ct be the random variable of the student sleeping in
class on day t. The professor has the following domain theory:

• The prior probability of getting enough sleep at time t, with no observations, is 0.6

• The probability of getting enough sleep on night t is 0.9 given that the student got enough sleep the previous
night, and 0.2 if not

• The probability of having red eyes is 0.1 if the student got enough sleep, and 0.7 if not

• The probability of sleeping in class is 0.2 if the student got enough sleep, and 0.4 if not

(a) [5 pts] The professor wants to formulate this information as a Dynamic Bayesian network. Provide a diagram
and complete probability tables for the model.

DBN diagram

We will accept the answer that either takes S0 or S1 as prior.

Probability Tables
Again you can take either S0 or S1 as prior. If you assume S0 for prior distribution, then we have
the following probability tables

S0 P (S0)
s 0.6
¬s 0.4

Rt St P (Rt|St)
r s 0.1
¬r s 0.9
r ¬s 0.7
¬r ¬s 0.3

St+1 St P (St+1|St)
st1 st 0.9
¬st1 st 0.1
st1 ¬st 0.2
¬st1 ¬st 0.8

Ct St P (Ct|St)
c s 0.2
¬c s 0.8
c ¬s 0.4
¬c ¬s 0.6
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(b) [20 pts] Using DBN you defined and for the evidence values

¬r1,¬c1 = not red eyes, not sleeping in class

r2,¬c2 = red eyes, not sleeping in class

r3, c3 = red eyes, sleeping in class

perform the following computations:

(i) State estimation: Compute P (St|r1:t, c1:t) for each of t = 1, 2, 3

P (S1|¬r1,¬c1) S0 as prior : We will first compute P (S1) to get P (S1|¬r1,¬c1). This will corre-
spond to predict and update step of our forward algorithm.
Predict : P (s1) =

∑
s0
P (s1|s0)P (s0) = 0.6 ∗ 0.9 + 0.4 ∗ 0.2 = .62

P (¬s1) = 1− P (s1) = .38

Update : P (s1|¬r1,¬c1) = αP (¬r1,¬c1|s1)P (s1) = α(0.9 ∗ 0.8 ∗ .62) = α.4464

P (¬s1|¬r1,¬c1) = αP (¬r1,¬c1|¬s1)P (¬s1) = α(0.3 ∗ 0.6 ∗ .38) = α.0684

from these two we get, α = 1
.4464+.0684 = .5148. So P (s1|¬r1,¬c1) = .4464

.5148 = .867,

P (¬s1|¬r1,¬c1) = .0684
.5148 = .133

If you assume S1 to be your prior, then P (S1) = 0.6 and P (¬S1) = 0.4. The observation at time
1 won’t matter.

P (S2|r1:2, c1:2) Again using forward algorithm.
Predict: P (s2|¬r1,¬c1) =

∑
s1
P (s2|s1)P (s1|¬r1,¬c1) = .9 ∗ .867 + .2 ∗ .133 = .807

P (¬s2|¬r1,¬c1) = 1− P (s2|¬r1,¬c1) = .193
Update: P (s2|r1:2, c1:2) = αP (r2,¬c2|s2)P (s2|¬r1,¬c1) = α(.1 ∗ .8 ∗ .807) = α ∗ .06456
P (¬s2|r1:2, c1:2) = αP (r2,¬c2|¬s2)P (¬s2|¬r1,¬c1) = α(.7 ∗ .6 ∗ .193) = α ∗ .08156
→ P (s2|r1:2, c1:2) = .442, P (¬s2|r1:2, c1:2) = .558
If you assume S1 to be your prior, then P (s2|r1:2, c1:2) = .237, P (¬s2|r1:2, c1:2) = .763

P (S3|r1:3, c1:3) Predict: P (s3|r1:2, c1:2) =
∑

s2
P (s3|s2)P (s2|r1:2, c1:2) = .9∗ .442+ .2∗ .558 = .5094

P (¬s3|r1:2, c1:2) = 1− P (s3|r1:2, c1:2) = .4906
Update: P (s3|r1:3, c1:3) = αP (r3, c3|s3)P (s3|r1:2, c1:2) = α(0.1 ∗ .2 ∗ .5094) = α ∗ .0102
P (¬s3|r1:3, c1:3) = αP (r3, c3|¬s3)P (¬s3|r1:2, c1:2) = α(.7 ∗ .4 ∗ .4906) = α ∗ .1374
→ P (s3|r1:3, c1:3) = .069, P (¬s3|r1:3, c1:3) = .931
If you assume S1 to be your prior, then P (s3|r1:3, c1:3) = .0396, P (¬s3|r1:3, c1:3) = .9604
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(ii) Smoothing: Compute P (St|r1:3, c1:3) for t = 2, 3 (Hint: AIMA pg. 574)

P (S3|r1:3, c1:3) same as part (a)
P (s3|r1:3, c1:3) = .069, P (¬s3|r1:3, c1:3) = .931
or P (s3|r1:3, c1:3) = .0396, P (¬s3|r1:3, c1:3) = .9604

P (S2|r1:3, c1:3) First compute backward message P (r3, c3|S2).

P (r3, c3|S2) =
∑
s3

P (r3, c3|s3)P (s3|S2)→ P (r3, c3|s2) = .02∗.9+.28∗.1 = .046, P (r3, c3|¬s2) = .228

P (S2|r1:3, c1:3) = αP (S2|r1:2, c1:2)P (r3, c3|S2)

→ P (s2|r1:3, c1:3) = α.442 ∗ .046 = α ∗ .0203, P (¬s2|r1:3, c1:3) = α.558 ∗ .228 = .127

→ P (s2|r1:3, c1:3) = .138, P (¬s2|r1:3, c1:3) = .862

or P (s2|r1:3, c1:3) = .059, P (¬s2|r1:3, c1:3) = .941

At every time step t for t = 1 to n, you observe a tuple (rt, ct) telling you whether the student had
red eyes and whether they were sleeping in class. Given these observations and P (Sk|r1:k, c1:k), find an
expression for P (Sk|r1:n, c1:n), where 0 ≤ k ≤ n. You may only use the probability tables in the DBN and
P (Sk|r1:k, c1:k)

P (Sk|r1:n, c1:n)

P (Sk|r1:n, c1:n) = P (Sk|r1:k, c1:k, rk+1:n, ck+1:n)

= αP (Sk|r1:k, c1:k)P (rk+1:n, ck+1:n|Sk, r1:k, c1:k)

= αP (Sk|r1:k, c1:k)P (rk+1:n, ck+1:n|Sk)

We can derive backward message P (rk+1:n, ck+1:n|Sk) by the following recursive formula

P (rk+1:n, ck+1:n|Sk) =
∑
sk+1

P (rk+1:n, ck+1:n, sk+1|Sk)

=
∑
sk+1

P (rk+1:n, ck+1:n|sk+1, Sk)P (sk+1|Sk)

=
∑
sk+1

P (rk+1, ck+1, rk+2:n, ck+2:n|sk+1)P (sk+1|Sk)

=
∑
sk+1

P (rk+1|sk+1)P (ck+1|sk+1)P (rk+2:n|sk+1)P (ck+2:n|sk+1)P (sk+1|Sk)

So the final form for general smoothing formula is,

P (Sk|r1:n, c1:n) = αP (Sk|r1:k, c1:k)
∑
sk+1

P (rk+1|sk+1)P (ck+1|sk+1)P (rk+2:n|sk+1)P (ck+2:n|sk+1)P (sk+1|Sk)
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(c) [5 pts] Reformulate the problem as a hidden Markov model. Provide a diagram and complete probability tables
for the model.
HMM diagram

Again we will accept a diagram with S0 or S1

Probability Tables
Instead of two observation variables in DBN, we will shrink two observations to one. This new
observation variables Ot can take four values. S0 can be S1

S0 P (S0)
s 0.6
¬s 0.4

St+1 St P (St+1|St)
st1 st 0.9
¬st1 st 0.1
st1 ¬st 0.2
¬st1 ¬st 0.8

Ot St P (Ot|St)
r, c s 0.02
r,¬c s 0.08
¬r, c s 0.18
¬r,¬c s 0.72
r, c ¬s 0.28
r,¬c ¬s 0.42
¬r, c ¬s 0.12
¬r,¬c ¬s 0.18

(d) [2 pts] True/False: The probabilities computed in part (b) would have been different if you used the HMM
instead of the DBN.
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Q2. [16 pts] Finding WALL-E
We would like to track the location of our friendly garbage collecting robot, WALL-E. WALL-E lives in a 4x4
Manhattan grid city, as shown below. The structure of the DBN is given below, which includes X, the position of
WALL-E; G, the readings from a garbage sensor; and (A,B,C,D), readings from the motion sensors.

The garbage sensor G takes on a value in {1, 2, ..., 16} corresponding to the square with the most garbage at time t.
WALL-E is programmed to move toward the square with the most garbage, but he will only take an optimal action
with probability 0.8. In each time step, WALL-E can either stay in the same square, or he can move to an adjacent
square. In the case where multiple actions would move you equally close to the desired position, WALL-E has an
equal probability of taking any of these actions. In the case that WALL-E fails to take an optimal action, he has an
equal probability of taking any of the non-optimal actions.

For example, if Xt = 2 and Gt = 15, the transition model will look like this:

Xt+1 P (Xt+1|Xt = 2, Gt = 15)

1 0.1

2 0.1

3 0.4

6 0.4

The motion sensors, (A, B, C, D), take on a value in {ON , OFF}. At a time t, the sensor adjacent to the square
that WALL-E is on always outputs ON . Otherwise, the sensor will output ON or OFF with probability 0.4 and
0.6. For example, the sensor tables would look like this if X = 6

A P (A|X = 6)

ON 1

OFF 0

B P (B|X = 6)

ON 0.4

OFF 0.6

C P (C|X = 6)

ON 0.4

OFF 0.6

D P (D|X = 6)

ON 0.4

OFF 0.6

(a) [6 pts]

Let’s say the initial particles you have are [Xt = 2, Xt = 12, Xt = 13]. You get the following readings from
your sensors [A = ON,B = OFF,C = ON,D = OFF,Gt−1 = 2].

What is the weight for each particle?
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Particle Weight

Xt = 2 P(A=ON|X=2)P(B=OFF|X=2)P(C=ON|X=2)P(D=OFF|X=2) = (1)(0.6)(0.4)(0.6) = 0.144

Xt = 12 P(A=ON|X=12)P(B=OFF|X=12)P(C=ON|X=12)P(D=OFF|X=12) = (0.4)(0.6)(0.4)(0) = 0

Xt = 13 P(A=ON|X=13)P(B=OFF|X=13)P(C=ON|X=13)P(D=OFF|X=13) = (0.4)(0.6)(1)(0.6) = 0.144

The value of Gt−1 does not affect the value of each weight

(b) [6 pts] It seems, much to your dismay, that sensor C is broken, and will always give a reading of ON . Recal-
culate the weights with this new knowledge.

Particle Weight

Xt = 2 P(A=ON|X=2)P(B=OFF|X=2)P(C=ON|X=2)P(D=OFF|X=2) = (1)(0.6)(1)(0.6) = 0.36

Xt = 12 P(A=ON|X=12)P(B=OFF|X=12)P(C=ON|X=12)P(D=OFF|X=12) = (0.6)(0.4)(1)(0) = 0

Xt = 13 P(A=ON|X=13)P(B=OFF|X=13)P(C=ON|X=13)P(D=OFF|X=13) = (0.4)(0.6)(1)(0.6) = 0.144

(c) [4 pts] To decouple this question from the previous question, let’s say that the weights you found for each
particle are as follows.

Particle Weight

Xt = 8 0.24

Xt = 14 0.1

Xt = 11 0.16

If you were to resample 100 new particles, what is the expected number of particles that will be X = 11?

Expected number of particles = 0.16
0.24+0.1+0.16 × 100 = 32
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Q3. [32 pts] Bayes’ Nets and Decision Networks
It is Monday night, and Bob is finishing up preparing for the CS188 Midterm. Bob has already mastered all the
topics except one: Decision Networks. He is contemplating whether to spend the remainder of his evening reviewing
that topic (review), or just go to sleep (sleep). Decision Networks are either going to be on the test (d) or not be
on the test (¬d). His utility of satisfaction is only affected by these two variables as shown below:

D P(D)
d 0.6
¬d 0.4

D A U(D,A)
d review 1200
¬d review 400
d sleep 0
¬d sleep 1600

(a) [6 pts] Maximum Expected Utility

Compute the following quantities:

EU(review) =

P (d)U(d|review) + P (¬d)U(¬d, review) = 0.6 ∗ 1200 + 0.4 ∗ 400 = 880

EU(sleep) =
P (d)U(d, sleep) + P (¬d)U(¬d, sleep) = 0.6 ∗ 0 + 0.4 ∗ 1600 = 640

MEU({}) =
max(880, 640) = 880

Action that achieves MEU({}) = review

This result notwithstanding, you should get some sleep.
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(b) [14 pts] The TA is on Facebook

The TAs happiness (H) is affected by whether decision networks are going to be on the exam. The happiness
(H) determines whether the TA posts on Facebook (f) or doesn’t post on Facebook (¬f). The prior on D and
utility tables remain unchanged.

F H P (F |H)
f h 0.6
¬f h 0.4
f ¬h 0.2
¬f ¬h 0.8

H D P (H|D)
h d 0.95
¬h d 0.05
h ¬d 0.25
¬h ¬d 0.75

D P(D)
d 0.6
¬d 0.4

D A U(D,A)
d review 1200
¬d review 400
d sleep 0
¬d sleep 1600

Decision network. Tables that define the model are shown above.

H P (H)
h 0.67
¬h 0.33

F P (F )
f 0.468
¬f 0.532

D F P (D|F )
d f 0.744
¬d f 0.256
d ¬f 0.474
¬d ¬f 0.526

F D P (F |D)
f d 0.58
¬f d 0.42
f ¬d 0.3
¬f ¬d 0.7

D H P (D|H)
d h 0.85
¬d h 0.15
d ¬h 0.09
¬d ¬h 0.91

Tables computed from the first set of tables. Some of them might be convenient to answer the questions below.

Compute the following quantities:

EU(review|f) = P (d|f)U(d, review) + P (¬d|f)U(¬d, review) = 0.744 ∗ 1200 + 0.256 ∗ 400 = 995.2

EU(sleep|f) = P (d|f)U(d, sleep) + P (¬d|f)U(¬d, sleep) = 0.744 ∗ 0 + 0.256 ∗ 1600 = 409.6

MEU({f}) = max(995.2, 409.6) = 995.2

Optimal Action({f}) = review

EU(review|¬f) = P (d|¬f)U(d, review) + P (¬d|¬f)U(¬d, review) = 0.474 ∗ 1200 + 0.526 ∗ 400 = 779.2

EU(sleep|¬f) = P (d|¬f)U(d, sleep) + P (¬d|¬f)U(¬d, sleep) = 0.474 ∗ 0 + 0.526 ∗ 1600 = 841.6

MEU({¬f}) = max(779.2, 841.6) = 841.6

Optimal Action({¬f}) = sleep



10

V PI({F}) = P (f)MEU({f})+P (¬f)MEU({¬f})−MEU({}) = 0.468∗995.2+.532∗841.6−880 = 33.48

(c) [12 pts] VPI Comparisons

Now consider the case where there are n TAs. Each TA follows the same probabilistic models for happiness
(H) and posting on Facebook (F ) as in the previous question.

True False V PI(H1|F1) = 0
Justify: F1 is just a noisy version of H1. Hence finding out H1 gives us more information about D even
when we have already observed F1. This in turn will allow us to more often make the right decision
between sleep and review.

True False V PI(F1|H1) = 0
Justify: The parent variable of the utility node, D, is conditionally independent of F1 given H1.

True False V PI(F3|F2, F1) > V PI(F2|F1)
Justify: The Fi variables give us noisy information about D. The more Fi variables we get to observe,
the better chance we end up being able to make the right decision. The more Fi variables we have already
observed, however, the less an additiona observation of a new variable Fj will influence the distribution
of D.

True False V PI(F1, F2, . . . , Fn) < V PI(H1, H2, . . . ,Hn)
Justify: The Fi variables are noisy versions of the Hi variables, hence observing the Hi variables is more
valuable.
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Q4. [20 pts] Sampling
Consider the following Bayes Net and corresponding probability tables.

We are going to use sampling to approximate the query P (R|f,m). We have the following 3 samples.

(r, e,¬w,m, f) (r,¬e, w,¬m, f) (r, e,¬w,m, f)

(a) [12 pts] Probability: Fill in the following table with the probabilities of drawing each respective sample given
that we are using each of the following sampling techniques. (Hint: P (f,m) = .181)

P (sample|method) (r, e,¬w,m, f) (r,¬e, w,¬m, f)
prior sampling .4 * .3 * .1 * .45 * .75 = .00405 .4 * .7 * .9 * .65 * .15 = 0.02457

rejection sampling P (r,e,¬w,m,f)
P (m,f) = .00405

.181 = .0224 0

likelihood weighting P (r)P (e|r)P (¬w|r) = .4 ∗ .3 ∗ .1 = .012 0

(b) [8 pts] We are going to use Gibbs sampling to estimate the probability of getting the third sample (r, e,¬w,m, f).
We will start from the sample (¬r,¬e,¬w,m, f) and resample E first then R. What is the probability of drawing
sample (r, e,¬w,m, f)?
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Put your answer here:

P (e|¬r,¬w,m, f) =
P (¬w,¬r, e,m, f)∑
e P (¬w,¬r, e,m, f)

=
.6 ∗ .6 ∗ .8 ∗ .45 ∗ .75

.6 ∗ .6 ∗ .8 ∗ .45 ∗ .75 + .6 ∗ .4 ∗ .8 ∗ .9 ∗ .75
= .4286

P (r|e,¬w,m, f) =
P (r, e,¬w,m, f)∑
r P (r, e,¬w,m, f)

=
.4 ∗ .3 ∗ .1 ∗ .45 ∗ .75

.4 ∗ .3 ∗ .1 ∗ .45 ∗ .75 + .6 ∗ .6 ∗ .8 ∗ .45 ∗ .75
= .04

The probability of sampling (¬r,¬e, w,m, f) is the product of three sampling probabilities. So .4286 *
.04 = 0.017.


