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1. Introduction

Randomness is all around you. Our reality is filled with uncertainty — the time it takes you to get to school,
the number of hours you sleep, the chances you’ll win the next lottery, etc. If everything in life occurred
deterministically, life would be pretty boring, wouldn’t it?

In the first half of the course, we’ve seen expectimax search and Markov Decision Processes, two tech-
niques for optimal planning that deal with probabilities and uncertainty. Now it’s time to understand how
to generate these probabilities for us to use them meaningfully. In particular, we will be building up the
tools needed to perform probabilistic inference: answering probabilistic queries about some factors in our
model given some evidence. But, before we do that, let’s go over a quick recap of probability.

2. Random Variables and Probability

A random variable is formally defined by: a function that maps each element in a sample space (£2) to a
real value, which is the probability of that element occuring. For the purposes of this class, you can think
of a random variable as just something in the real world that can take on multiple values, and assigning
every value a probability. In this class, we’ll be focusing on discrete random variables, where the sample
space takes on a finite number of values. Anytime we refer to a random variable, we’ll assume it’s discrete.

As an example, one random variable could be Weather(W), and the possible values are {sun,rain},
where sun occurs 70% of the time and rain occurs 30% of the time.

We can define a random variable as a table. For the Weather(W) example, the corresponding table
is:

W | Pr(W)
sun 0.7
rain 0.3

The probability entries in the table define the distribution of the random variable. A valid distribution
for a random variable X must satisfy the following two criteria:

1) All entries must be non-negative; Va, Pr(X = x)
2) The sum of all entries must be 1; ) Pr(X = x)
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Even with a random variable with two possible values, there are infinitely many valid distributions. One
thing to point about regarding notation — it is conventional to define random variables with a capital letter,
since they are functions. Lower case variables refer to an particular outcome of the random variable. So,
when we write Pr(X = x), we are querying for the probability that the random variable X takes on the
outcome z. A shorthand notation for Pr(X = x) is Pr(x), and can be used when it unambiguous which
random variable z is from.
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3. Joint Distributions

Sometimes we are interested in relationships between random variables. A joint distribution is a dis-
tribution that maps each possible joint outcome combination from a set of two or more random variables
to the probability of that particular combination occurring. So, adding to the Weather(W') example, we
might be concerned about the random variable StayHome(S) as well. The joint distribution may look
something like:

w S | Pr(W,S)
sun | yes 0.2
sun | no 0.5
rain | yes 0.2
rain | no 0.1

From this joint distribution, we can read off that the probability that both the events W = sun and
S = yes occur is 0.2.

4. Marginalization

Now that we’ve seen joint distributions that involve a set of two or more random variables, we would also
like to recover the distribution of a smaller subset of these random variables from the joint. Let’s go back
to our Weather(W) — StayHome(S) table above. Suppose we're interested in Pr(S = yes). To calculate
this value, we look for the rows consistent with S = yes in the joint distribution, which would be the first
and third rows. Then, since the events (W = sun NS = yes) and (W = rain NS = yes) are disjoint
(meaning that they will never occur at the same time), we can add the probabilities together to recover
Pr(S = yes).

Pr(S =yes) = Pr(W = sun, S = yes) + Pr(W = rain, S = yes) = 0.2+ 0.2 = 0.4
Likewise:
Pr(S =no) = Pr(W = sun, S = no) + Pr(W = rain,S =no) =0.5+0.1 =0.6

Notice that to recover the probability of S = yes, we had to take a sum over the entries in the joint
distribution that were consistent with S = yes, which also amounts to summing over all possible values
the unwanted variable(s) — in this case, W — while fixing S = yes. A similar argument holds for S = no.
Because of this, we could have written the calculation for Pr(S = yes) and Pr(S = no) as:

Pr(S =yes) = ZPT(W =w, S = yes)

Pr(S =no) = ZPT‘(W =w,S =no)
w
We can compactly combine the above two equations as:

Vs; Pr(S=s) = ZPT(W =w,5 =25)

Or even more compactly:

Pr(S)=>_Pr(W =uw,S5)

This technique is what we call marginalization, which involves starting from a joint distribution of several
random variables, querying for the distribution of a smaller subset of these random variables, and summing
out over the possible values of the unwanted random variable(s).
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5. Conditional Probability and the Normalization Trick

In the previous example, we’ve calculated the probability that you would stay home. But what if it was
currently raining? Then what is the probability that you would stay home?

Conditional probabilities help answer questions like the one above. A conditional probability takes
the form Pr(X = z|Y = y), which stands for the probability that X takes on the value x given we know
that Y has the value y. In the expression above, notice that the random variable we are querying for (X)
comes to the left of the conditioning bar, whereas the evidence (Y') comes to the right of the conditioning
bar. This holds true as we extend conditional probabilities to more than two random variables.

To calculate the conditional probability Pr(X = z|Y = y), we use the following definition:
Pr(X =z,Y =y)
Pr(Y =y)
This should make sense intuitively. We already know that Y = y, and out of the probability that Pr(Y = y),
we want to find how much X = z is covered, which is just Pr(X = z,Y =y).

Pr X =z|Y =y) =

Using the tools of joint distributions and marginalization discussed before, we can work out the following
conditional probabilities Pr(S|W) for the Weather(W') — StayHome(S) example:

W | S | Pr(S|W)
sun | yes 2/7

sun | no 5/7
rain | yes 2/3
rain | no 1/3
An example calculation: Pr(S = yes|W = sun) = PT(?:(%S;Z;;“") =02=2

Notice that the table Pr(S|W) is not a distribution, since the entries do not sum to 1. However, the
table holds two distributions: Pr(S|W = sun) and Pr(S|W = rain). There is a shortcut to cal-
culating these distributions. Take Pr(S|W = sun). We know that for a particular outcome S = s,
Pr(S = s|W = sun) = %. For every s, notice that the denominator Pr(W = sun) is com-
mon. Hence, we can treat the denominator as some normalization constant that will bring the sum of our
entries to 1. This means, all we need to worry about is finding the numerators, and then performing a

normalization step to ensure the probabilities sum to 1.

Using the example above to find Pr(S|W = sun), we note that Pr(S = yes,W = sun) = 0.2 and
Pr(S = no,W = sun) = 0.5. The sum of these two entries is 0.7, so by normalization and dividing both

entries by 0.7, we get that Pr(S = yes|W = sun) = 2 and Pr(S = no|W = sun) = 5.

6. Product Rule

Rewriting the definition conditional probability shown above, we see that

Pr(X =alY =y) = Pr(ﬁ;f’;; v)

becomes
Pr( X =z,Y=y)=Pr(X =z|Y =y)Pr(Y =y)

The above statement is the product rule. Note that we could have switched the ordering of X and Y:
Pr(X=z,Y=y)=Pr(Y =yl X =z)Pr(X =x)
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7. Chain Rule

We can modify the product rule for more than two random variables. In the product rule equation, let
Y =y be replaced by Y =y, Z = 2. Then we have:

PriX=z,Y=y, Z=2)=Pr(X=z|Y =y, Z=2)Pr(Y =y, Z =2)
Using the product rule on the last term, the equation simplifies to:
PriX=xY=y, Z=2)=Pr(X=x|Y=y,Z=2)Pr(Y =y|lZ =2)Pr(Z = 2)

If we have n random variables X1, X, ..., X,,, we can write the joint distribution as:

n
Pr(x1,x9,...x,) = Pr(xy)Pr(ze|zy)...Pr(zy|x1, ooy ®p_1) = HPr(xi\xl, ey Ti—1)
i=1

The above is called the chain rule. For n random variables, there are n! orderings of the chain rule.

8. Bayes’ Rule

Going back to the product rule, we say two ways of writing Pr(X = z,Y = y):
PriX=z,Y=y)=Pr(X=z|Y =y)Pr(Y =y)=Pr(Y =y|X =z)Pr(X =z

Rewriting this equation to solve for Pr(X = z|Y = y), we get:

Pr(Y =y|X =x)Pr(X =x)
Pr(Y =y)

Pr(X =z|Y =y) =

This is Bayes’ rule. Note the importance of this rule. On the right side, we have a Pr(X = z) term in
the numerator. We will refer to this as the prior distribution of X, prior in the sense that we have not
observed the evidence Y = y yet. On the left side, we have Pr(X = z|Y = y), which is the posterior
distribution of X, posterior in the sense that we have already observed Y = y.

9. Independence and Conditional Independence

Another way to characterize relationships between random variables is to see if they are independent or not.
For two random variables X and Y to be independent random variables, it must hold that whether
or not you observed the value of X does not change the probability distribution of Y. Symbolically put,
that means that Vo, y; Pr(Y =y) = Pr(Y = y|X = z). Likewise, Vz,y; Pr(X =z) = Pr(X =z|Y =vy).

Going back to the product rule:
Pr(X =xz,Y =y)=Pr(X =z)Pr(Y =y|X =)

If X and Y are independent, we know that Pr(Y = y) = Pr(Y = y|X = x), so by substitution, the
product rule becomes:
Pr( X =z,Y=y)=Pr(X =2)Pr(Y =y)

Conditional independence is very similar to independence; we say that two random variables X and Y
are conditionally independent given a third random variable Z if, already knowing the value of Z, whether
or not you have observed the value of Y does not change the distribution on X|Z. Symbolically put, that
means that if X 1L Y|Z, Vz,y,z; Pr(X =z|Y =y, Z = 2) = Pr(X =z|Z = z).

Similarly, the product rule simplifies to: Pr(X =z,Y =y|Z = 2) = Pr(X =z|Z = 2)Pr(Y =y|Z = 2).



