
CS188 Fall 2015 Section 7: Sampling and Markov Models

Sampling
The Bayes Net in the diagram below describes a person’s ice-cream eating habits. The nodes W1 and W2 stand
for the weather on days 1 and 2, which can either be rainy R or sunny S, The nodes I1 and I2 stand for whether
or not the person ate ice-cream that day. They can take the values T or F . The conditional probability distri-
butions relevant to the graphical model are also given to you, note that there is a single conditional probability
distribution P (I|W ), which I1 and I2 follow.
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Suppose we use prior sampling to produce the following samples from the weather/ice-cream model:

(W1, I1,W2, I2)
R, F, R, F excluded by rejection sampling
S, F, S, T excluded by rejection sampling
S, T, S, T excluded by rejection sampling
S, T, S, T excluded by rejection sampling
S, T, R, F

(W1, I1,W2, I2)
R, F, R, F excluded by rejection sampling
S, T, S, T excluded by rejection sampling
R, F, R, T excluded by rejection sampling
S, T, R, F
R, F, S, T excluded by rejection sampling

1. What is P̂ (W2 = R)?
Number of samples in which W2 = R: 5. Total number of samples: 10. Answer 5/10 = 0.5.

2. Cross off samples rejected by rejection sampling if we are computing P̂ (W2|I1 = T, I2 = F )

Now use likelihood weighting, and assume we’ve generated the following samples, given the evidence
I1 = T and I2 = F .

(W1, I1,W2, I2)
S, T, R, F
R, T, R, F
S, T, R, F

(W1, I1,W2, I2)
S, T, S, F
S, T, S, F
R, T, S, F

3. What is the weight of the first sample (S,T,R,F) above?

The weight given to a sample in likelihood weighting is
∏

evidence variables e Pr(e|Parents(e)). In this
case, the evidence is I1 = T, I2 = F . The weight of the first sample is therefore w = Pr(I1 = T |W1 =
S) · Pr(I2 = F |W2 = R) = 0.9 · 0.8 = 0.72.
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4. Use likelihood weighting to estimate P̂ (W2|I1 = T, I2 = F )

The sample weights are given by

(W1, I1,W2, I2) w
S, T, R, F 0.72
R, T, R, F 0.16
S, T, R, F 0.72

(W1, I1,W2, I2) w
S, T, S, F 0.09
S, T, S, F 0.09
R, T, S, F 0.02

P̂r(W2 = R|I1 = T, I2 = F ) =
0.72 + 0.16 + 0.72

0.72 + 0.16 + 0.72 + 0.09 + 0.09 + 0.02
= 0.889

P̂r(W2 = S|I1 = T, I2 = F ) = 1− 0.889 = 0.111.

Markov Model
We want to represent Berkeley’s weather by Markov Model where we assume that the weather at day t is
independent to the weather at day 0, ..., t − 2 given the weather at day t − 1. We have the following initial
distribution and transition model.

W0 P (W0)
sun 0.9
rain 0.1

Wi Wi−1 P (Wi|Wi−1)
sun sun 0.8
rain sun 0.2
sun rain 0.3
rain rain 0.7

Compute the following.

1. P (W1 = sun)∑
w0
P (w0,W1 = sun) =

∑
w0
P (W1 = sun|w0)P (w0) = 0.8 ∗ 0.9 + 0.3 ∗ 0.1 = .75

2. P (W2 = sun)∑
w1
P (w1,W2 = sun) =

∑
w1
P (W2 = sun|w1)P (w1) = 0.8 ∗ 0.75 + 0.3 ∗ 0.25 = .675

3. P (W∞ = sum) (stationary distribution)
By transition model,

P (W∞ = sun) = P (W∞+1 = sun) =
∑
w∞

P (W∞+1 = sun|w∞)P (w∞) = 0.8P (W∞ = sun)+0.3P (W∞ = rain)

Also, we know that P (W∞ = sun) + P (W∞ = rain) = 1. By solving a system of equations, we get
P (W∞ = sun) = 0.6
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Hidden Markov Model
You are stuck on the second floor of Soda Hall working on the project for days. You have decided to not leave
the building until you finish the project but wants to know what the weather is like outside. The only source
of information you have is the thermometer in the room. We have a following initial distribution, transition
model, and sensor model. Our initial distribution and transition model are same as the last problem.

W0 P (W0)
sun 0.9
rain 0.1

Wi Wi−1 P (Wi|Wi−1)
sun sun 0.8
rain sun 0.2
sun rain 0.3
rain rain 0.7

Fi Wi P (Fi|Wi)
high sun 0.7
low sun 0.3
high rain 0.2
low rain 0.8

1. We observed that F1 = high and computed P (W1) from previous section, what is the updated probability
P (W1 = sum|F1 = high)?

P (W1 = sun|F1 = high) =
P (W1 = sun, F1 = high)

P (F1 = high)

=
P (F1 = high|W1 = sun)P (W1 = sun)∑

w1
P (F1 = high|w1)P (w1)

=
0.7 ∗ 0.75

0.7 ∗ 0.75 + 0.2 ∗ 0.25
= 0.913

2. We want to predict tomorrow’s weather based on our observation. What is P (W2 = sun|F1 = high)?

P (W2 = sun|F1 = high) =
∑
w1

P (W2 = sun,w1|F1 = high)

=
∑

P (W2 = sun|w1)P (w1|F1 = high)

= 0.8 ∗ .913 + 0.3 ∗ (1− .913) = .757

3. Given P (wi|f1, ..., fi) for all wi, find P (Wi+1|f1, ..., fi).

P (Wi+1|f1, ...fi) =
∑
wi

P (Wi+1, wi|f1, .., fi) =
∑
wi

P (Wi+1|wi)P (wi|f1, ..., fi)

4. Forward Algorithm: Given P (wi|f1, ..., fi) for all wi and new observation fi+1, find P (Wi+1|f1, .., fi+1).
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By conditional probability,

P (Wi+1|f1, ...fi, fi+1) =
P (Wi+1, fi+1|f1, ..., fi)

P (fi+1|f1, ..., fi)

=
P (fi+1|Wi+1, f1, ..., fi)P (Wi+1|f1, ..., fi)

P (fi+1|f1, ..., fi)

=
P (fi+1|Wi+1)

∑
wi
P (Wi+1|wi)P (wi|f1, ..., fi)

P (fi+1|f1, ..., fi)

= αP (fi+1|Wi+1)
∑
wi

P (Wi+1|wi)P (wi|f1, ..., fi), α =
1

P (fi+1|f1, ..., fi)

On the first line we used conditional probability for Wi+1 and fi+1. For the second line, we used product
rule for Wi+1, fi+1. On the third line, we replaced P (fi+1|Wi+1, f1, ..., fi) with P (fi+1|Wi+1) by Markov
Chain assumption and P (Wi+1|f1, ..., fi) with what we computed on problem 3. Lastly, α = 1

P (fi+1|f1,...,fi)
does not have to be computed directly, but can be normalized after computing all P (Wi+1|f1, ...fi, fi+1).
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