CS188 Spring 2016 Section 9: HMMs

Consider the following Hidden Markov Model.

X_{1}	$P\left(X_{1}\right)$
0	0.3
1	0.7

X_{t}	X_{t+1}	$P\left(X_{t+1} \mid X_{t}\right)$
0	0	0.4
0	1	0.6
1	0	0.8
1	1	0.2

X_{t}	O_{t}	$P\left(O_{t} \mid X_{t}\right)$
0	A	0.9
0	B	0.1
1	A	0.5
1	B	0.5

Suppose that we observe $O_{1}=A$ and $O_{2}=B$.
Using the forward algorithm, compute the probability distribution $P\left(X_{2} \mid O_{1}=A, O_{2}=B\right)$ one step at a time.

1. Compute $P\left(X_{1}, O_{1}=A\right)$.

$$
\begin{aligned}
& P\left(X_{1}, O_{1}=A\right)=P\left(X_{1}\right) P\left(O_{1}=A \mid X_{1}\right) \\
& P\left(X_{1}=0, O_{1}=A\right)=(0.3)(0.9)=0.27 \\
& P\left(X_{1}=1, O_{1}=A\right)=(0.7)(0.5)=0.35
\end{aligned}
$$

2. Using the previous calculation, compute $P\left(X_{2}, O_{1}=A\right)$.

$$
\begin{aligned}
& P\left(X_{2}, O_{1}=A\right)=\sum_{x_{1}} P\left(x_{1}, O_{1}=A\right) P\left(X_{2} \mid x_{1}\right) \\
& P\left(X_{2}=0, O_{1}=A\right)=(0.27)(0.4)+(0.35)(0.8)=0.388 \\
& P\left(X_{2}=1, O_{1}=A\right)=(0.27)(0.6)+(0.35)(0.2)=0.232
\end{aligned}
$$

3. Using the previous calculation, compute $P\left(X_{2}, O_{1}=A, O_{2}=B\right)$.

$$
\begin{aligned}
& P\left(X_{2}, O_{1}=A, O_{2}=B\right)=P\left(X_{2}, O_{1}=A\right) P\left(O_{2}=B \mid X_{2}\right) \\
& P\left(X_{2}=0, O_{1}=A, O_{2}=B\right)=(0.388)(0.1)=0.0388 \\
& P\left(X_{2}=1, O_{1}=A, O_{2}=B\right)=(0.232)(0.5)=0.116
\end{aligned}
$$

Let's try to use Particle Filtering to estimate the distribution of $P\left(X_{2} \mid O_{1}=A, O_{2}=B\right)$.
We start with two particles: $P_{1}=0, P_{2}=1$. Use the following random numbers:

$$
\{0.22,0.05,0.33,0.20,0.84,0.54,0.79,0.66,0.14,0.96\}
$$

1. Observe: Compute the weight of the two particles after evidence $O_{1}=A$.
$w\left(P_{1}\right)=P\left(O_{t}=A \mid X_{t}=0\right)=0.9$
$w\left(P_{2}\right)=P\left(O_{t}=A \mid X_{t}=1\right)=0.5$
2. Resample: Using the random numbers, resample P_{1} and P_{2} based on the weights.

We now sample from the weighted distribution we found above. After normalizing the weights, we find that P_{1} maps to range $\left[0,0.643\right.$), and P_{2} maps to range $[0.643,1)$. Using the first two random samples, we find:
$P_{1}=$ sample (weights, 0.22$)=0$
$P_{2}=\operatorname{sample}($ weights, 0.05$)=0$
3. Elapse Time: Now let's compute the elapse time particle update. Sample P_{1} and P_{2} from applying the time update.
$P_{1}=\operatorname{sample}\left(P\left(X_{t+1} \mid X_{t}=0\right), 0.33\right)=0$
$P_{2}=\operatorname{sample}\left(P\left(X_{t+1} \mid X_{t}=0\right), 0.20\right)=0$
4. Observe: Compute the weight of the two particles after evidence $O_{2}=B$.

$$
\begin{aligned}
& w\left(P_{1}\right)=P\left(O_{t}=B \mid X_{t}=0\right)=0.1 \\
& w\left(P_{2}\right)=P\left(O_{t}=B \mid X_{t}=0\right)=0.1
\end{aligned}
$$

5. Resample: Using the random numbers, resample P_{1} and P_{2} based on the weights.

Because both of our particles have $X=0$, resampling will still leave us with two particles with $X=0$.
$P_{1}=0$
$P_{2}=0$
6. What is our estimated distribution for $P\left(X_{2} \mid O_{1}=A, O_{2}=B\right)$?
$P\left(X_{2}=0 \mid O_{1}=A, O_{2}=B\right)=2 / 2=1$
$P\left(X_{2}=1 \mid O_{1}=A, O_{2}=B\right)=0 / 2=0$

