CS188 Spring 2016 Section 9: HMMs

Consider the following Hidden Markov Model.

X_{1}	$P\left(X_{1}\right)$
0	0.3
1	0.7

X_{t}	X_{t+1}	$P\left(X_{t+1} \mid X_{t}\right)$
0	0	0.4
0	1	0.6
1	0	0.8
1	1	0.2

X_{t}	O_{t}	$P\left(O_{t} \mid X_{t}\right)$
0	A	0.9
0	B	0.1
1	A	0.5
1	B	0.5

Suppose that we observe $O_{1}=A$ and $O_{2}=B$.
Using the forward algorithm, compute the probability distribution $P\left(X_{2} \mid O_{1}=A, O_{2}=B\right)$ one step at a time.

1. Compute $P\left(X_{1}, O_{1}=A\right)$.
2. Using the previous calculation, compute $P\left(X_{2}, O_{1}=A\right)$.
3. Using the previous calculation, compute $P\left(X_{2}, O_{1}=A, O_{2}=B\right)$.

Let's try to use Particle Filtering to estimate the distribution of $P\left(X_{2} \mid O_{1}=A, O_{2}=B\right)$.
We start with two particles: $P_{1}=0, P_{2}=1$. Use the following random numbers:

$$
\{0.22,0.05,0.33,0.20,0.84,0.54,0.79,0.66,0.14,0.96\}
$$

1. Observe: Compute the weight of the two particles after evidence $O_{1}=A$.
2. Resample: Using the random numbers, resample P_{1} and P_{2} based on the weights.
3. Elapse Time: Now let's compute the elapse time particle update. Sample P_{1} and P_{2} from applying the time update.
4. Observe: Compute the weight of the two particles after evidence $O_{2}=B$.
5. Resample: Using the random numbers, resample P_{1} and P_{2} based on the weights.
6. What is our estimated distribution for $P\left(X_{2} \mid O_{1}=A, O_{2}=B\right)$?
