CS188 Spring 2016 Section 9: HMMs

Consider the following Hidden Markov Model.

Suppose that we observe $O_1 = A$ and $O_2 = B$. Using the forward algorithm, compute the probability distribution $P(X_2|O_1 = A, O_2 = B)$ one step at a time.

1. Compute $P(X_1, O_1 = A)$.

2. Using the previous calculation, compute $P(X_2, O_1 = A)$.

3. Using the previous calculation, compute $P(X_2, O_1 = A, O_2 = B)$.

Let's try to use Particle Filtering to estimate the distribution of $P(X_2|O_1 = A, O_2 = B)$. We start with two particles: $P_1 = 0, P_2 = 1$. Use the following random numbers:

 $\{0.22, 0.05, 0.33, 0.20, 0.84, 0.54, 0.79, 0.66, 0.14, 0.96\}$

1. **Observe**: Compute the weight of the two particles after evidence $O_1 = A$.

2. **Resample**: Using the random numbers, resample P_1 and P_2 based on the weights.

3. Elapse Time: Now let's compute the elapse time particle update. Sample P_1 and P_2 from applying the time update.

4. **Observe**: Compute the weight of the two particles after evidence $O_2 = B$.

5. **Resample**: Using the random numbers, resample P_1 and P_2 based on the weights.

6. What is our estimated distribution for $P(X_2|O_1 = A, O_2 = B)$?