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I. INTRODUCTION

We consider the problem of following a given path
in task space—the space of all position of a robot’s
end effector. Here, the objective is to compute a path
in the configuration space (C-space), the space defined
by the position and orientation of each of the robot’s
joints, “as best as possible” (we will formally define this
shortly). We are motivated by settings where the task-
space path is provided, but it is not clear if there exists
a collision-free C-space path that exactly traces it. This
can occur due to obstacles in the workspace or due to
kinematic constraints of the robot. One example where
such a setting occurs is when robot manipulators operate
in household environments performing tasks such as
serving a cup of coffee. In order not to spill the coffee,
the robot’s end-effector has to stay roughly upright. A
second example that motivates our work comes from
medical robots such as steerable needles and concentric
tube robots [3]. In this application, we envision the
surgeon providing the reference path in task space and
our algorithm producing the C-space path for either the
tip of the tube robot or the bevel edge of the steerable
needle that follows the reference path.

There exists a multitude of planners that allow to
follow paths in task space: Berenson et al. [1] present
a C-space planner that handles multiple constraints,
including end-effector constraints. Yao and Gupta [9] use
randomized gradient descent and a search that alternates
between task space and C-space using local-trajectory
tracking to enforce the constraint. These local trajectory-
tracking methods are similar to methods that leverage
the null space of the Jacobian matrix [8]. Oriolo et al.
[7] detail the limitations with these kinematic control
methods.

Unfortunately, these methods do not optimize accord-
ing to a metric that enforces the goal of the task: to follow
a path. In this paper we employ the Fréchet distance,
widely used in computational geometry, as a natural
way to measure the distance between paths in task
space [2]. Our key insight is that using Fréchet distance
to measure error allows us to efficiently organize an
anytime search for a path that closely follows our desired
task-space path.
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Fig. 1: On top is a flowchart of our algorithm. We create data structures
that allow us to efficiently compute a path that minimizes the Fréchet
distance to the reference path and then to incrementally reduce this
distance. Each grey box outlines a major step: (1) generating candidate
paths, (2) searching over paths and (3) densifying.

The Fréchet distance was proposed as a method for
measuring distance between task-space paths by Holla-
day and Srinivasa [5], who used trajectory optimization
to produce a path that closely follows the reference
path. However, their approach suffers from the fact that
it maps each task-space point to one arbitrary C-space
point in the set of inverse kinematic (IK) solutions.
Instead, we search over the space of IK solutions, ap-
proximating the search space by a layered graph that
organizes IK solutions by their task-space location along
the path. Further borrowing from computational geom-
etry, we can efficiently compute the Fréchet distance
between candidate paths in the layered graph and our
reference path by treating them as a set of simplicial
complexes [4]. We can efficiently search the cross product
of our two complexes with a simple variant of Dijkstra’s
graph-search algorithm.

II. ALGORITHMIC APPROACH

Our algorithmic approach, depicted in Fig. [I| can be
summarized as follows: Given a reference path £ in task
space, we generate a set of candidate paths by sampling
waypoints along ¢. For each waypoint, we compute a
set of different IK solutions to create a layered graph L.
Vertices of this graph correspond to configurations and
we define a layer as all configurations whose forward
kinematics map to the same waypoint. The edges of
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Fig. 2: Quality of the solution produced by our sample-based approach
and the optimation-based method used by Holladay and Srinivasa [5].
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Fig. 3: We show the progression of the optimization-based approach
(orange) and the sample-based approach (pink) as they try to follow
the reference path (black). Randomly generated obstacles in the envi-
ronment are shown in grey. These figures only capture the differences
in position, not orientation.

this graph connect any two configurations that belong
to the same or to adjacent layers. In order to obtain the
path £ € L that minimizes the Fréchet distance with
the reference path ¢, we compute a cross-product graph
® = ¢ x L. Following Har-Peled and Raichel [4], we
compute the minimal-bottleneck path in ®. This, in turn,
induces the path £ € L that indeed minimizes the Fréchet
distance with £. To improve the quality of the solution
in an online fashion, we employ various densification
strategies to produce new candidate paths. We can ef-
ficiently incorporate these new paths by updating our
graphs and searching again the cross-product graph.

III. EVALUATION
A. Manipulation tasks

To evaluate our approach, we start by comparing our
sampling-based algorithm with the optimization-based
approach presented by Holladay and Srinivasa [5]. We
compare the two methods by examining the anytime
performance in Fig. [2] and their progression in Fig. B} To
compare anytime performance, we query each planner
after t seconds for their best solution so far.

While the optimization-based approach finds an ini-
tial solution faster, its Fréchet error solution is signif-

Fig. 4: To perform minimally-invasive surgery through anatomical
regions that are highly constrained, such as accessing the pituitary
gland in the brain via the sinuses, the CTR could be inserted through
the nasal cavity and a small window cut through the sinuses. We
envision the surgeon providing one reference path to reach the sinus,
a second to cut an opening through the sinus and a third to reach the
brain. In this figure, we see an example of such a window, which could
be traced by the surgeon, in purple and the CTR accessing the brain,
in orange.

icantly higher than the one found by our sampling-
based approach. As shown in Fig. Ba] the initial solution
of the optimization-based approach (shown in orange)
poorly captures the reference path (black) compared
to the sample-based approach (pink). While both ap-
proaches continue to improve their solutions over time,
the optimization-based approach does so at a faster rate.
However, given the fixed time budget, the sample-based
approach produces a better quality solution. Given more
time, we would expect both solution to continue to
improve.

Our sample-based approach is able to converge to a
path that more closely follows the reference path because
it searches over sets of IK solutions and it leverages
the Fréchet distance to efficiently search. Indeed, we
can show that under some assumptions, our algorithm’s
output will converge to a path that exactly traces the
reference paths [6].

B. Surgical tasks

We are currently exploring the applicability of our
approach for the case of minimally invasive surgery
by concentric tube robots (CTRs) [3]. These systems
are composed of multiple telescoping, concentric, pre-
curved, superelastic tubes that can be axially translated
and rotated at their bases relative to one another. They
derive bending not from tendon wires or other external
mechanisms, but from elastic tube interaction in the
backbone itself, permitting high dexterity and small
diameter. Controlling such tubes is highly un-intuitive
for humans, motivating the need for new user interfaces
and efficient planning algorithms

We envision the surgeon providing a reference path
and our algorithm producing the actual path for the tip
of the tube that follows the reference path.

For a depiction of the robot and the reference path,
see Fig. [l For videos demonstrated initial results in
simulation, see |goo.gl/tzjvEd!
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