CSE 373 Extra Problems 1

I Hope You Like Math...

Using big-O notation.

- (a) For each pair of functions f(n) and g(n), state whether f(n) = O(g(n)), $f(n) = \Omega(g(n))$, or $f(n) = \Theta(g(n))$. For example, for $f(n) = n^2$ and $g(n) = 2n^2 n + 3$, write $f(n) = \Theta(g(n))$.
 - $f(n) = n \text{ and } g(n) = n^2 n$
 - $f(n) = n^2$ and $g(n) = n^2 + n$
 - f(n) = 8n and $g(n) = n \log n$
 - $f(n) = 2^n$ and $g(n) = n^2$
 - $f(n) = 3^n$ and $g(n) = 2^{2n}$
- (b) For each of the following functions f(n), state the order of growth using Θ notation. For example, for f(n) = n + 5 write $f(n) = \Theta(n)$.
 - f(n) = 50
 - $\bullet \ f(n) = n^2 2n + 3$
 - $f(n) = n + \cdots + 2 + 1$
 - $f(n) = n^{100} + 1.01^n$
 - $\bullet \ f(n) = n^{1.1} + n \log n$

Code Analysis

For the pseudo-code snippet below, give the asymptotic running time in Θ notation. Assume that basic arithmetic operations (+,-,×, and /) are constant time.

for
$$i := 1$$
 to n do $j := 0$;
while $j \le i$ do $j := j + 2$

Credits:

Problems shamelessly and completely stolen from UC Berkeley CS 170.